לדלג לתוכן

פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית

רענון הפורטל כיצד אוכל לעזור?    

המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.


פלימפטון 322
פלימפטון 322

פלימפטון 322 הוא שמו של לוח חרסית שמקורו בבבל והוא מתוארך בין השנים 1900 לפנה"ס עד 1600 לפנה"ס. הלוח, הכתוב בכתב יתדות, מכיל ארבע עמודות וחמש עשרה שורות של מספרים בספרות בבליות, כך שהמספרים בשתיים מן העמודות שייכים לשלשות פיתגוריות. מהות המספרים שבו שנויה במחלוקת – על פי חלק מהפרשנויות, הלוח שימש לייצור שלשות פיתגוריות או לחישוב ערכה של פונקציה טריגונומטרית ובכך הוא מעיד על רמה מתמטית גבוהה של התרבות הבבלית.

הלוח התגלה בעת חפירות ארכאולוגיות לא חוקיות, יחד עם עוד אלפי לוחות מסוגו, בשנות העשרים של המאה ה-20. ג.א. פלימפטון קנה את הלוח, ככל הנראה מבלי שהוא או המוכר יבחינו בייחוד שבו, ובשנות ה-30 תרם אותו יחד עם האוסף שלו לאוניברסיטת קולומביה, שם הוא שמור עד עצם היום הזה.


ג'ון פון נוימן בשנות ה-40 של המאה ה-20
ג'ון פון נוימן בשנות ה-40 של המאה ה-20

ג'ון לואיס פון נוימן (28 בדצמבר 19038 בפברואר 1957), מתמטיקאי אמריקאי ממוצא יהודי-הונגרי. היה שותף לשניים מההישגים הטכנולוגיים הבולטים של המאה העשרים: פיתוח פצצת אטום ופיתוח המחשב האלקטרוני, אך זכור בעיקר כיוצרה של תורת המשחקים. כמו כן הרים תרומה משמעותית לחקר מכניקת הקוונטים, תורת הקבוצות (תחום שהפגיש אותו עם אברהם הלוי פרנקל) וענפי מתמטיקה נוספים. שילב בהצלחה רבה פעילות במחקר טהור ובמחקר שימושי, בענפי מדע רבים.

פון נוימן נולד בבודפשט למשפחה יהודית מתבוללת. אביו, מקס נוימן, היה בנקאי יהודי אמיד. עד גיל 10 למד בבית בהדרכת מורים פרטיים כמנהג עשירי אירופה. סימנים של גאונות ניכרו בו כבר בילדותו. יוג'ין ויגנר, חתן פרס נובל לפיזיקה לשנת 1963, שלמד יחד עם פון נוימן בבית הספר התיכון, אמר עליו מאוחר יותר: "יש שני סוגי אנשים בעולם: ג'וני פון נוימן ואנחנו, השאר". המורה למתמטיקה בגימנסיה זיהה מיד את כושרו המתמטי יוצא הדופן והמליץ להוריו לשכור לו מורה פרטי למתמטיקה. ההורים שכרו את מיכאל פקטה שהיה מרצה באוניברסיטת בודפשט והוא לימד אותו מתמטיקה גבוהה.

תמונה של רקמה מהוואי המבוססת על ריצוף של המישור, ומקיימת את חבורת הסימטריה pmg – הריצוף סימטרי תחת סיבוב ב-180 בשני צירים שונים, סימטרי תחת שיקוף בציר אחד, ותחת שיקוף מוזז בציר אחד, נוסף על סימטריות להזזה בשני כיוונים שונים.

כיסוי האוריינטציות של טבעת מביוס.

כיסוי האוריינטציות הוא כלי לחקר יריעות לא אוריינטביליות. עבור משטח במרחב, ניתן לתאר את כיסוי האוריינטציות באופן הבא: נדמיין שהמשטח עשוי מנייר דו-שכבתי. נפריד את השכבות. היריעה שתתקבל תהיה מרחב הכיסוי של כיסוי האוריינטציות. העתקת הכיסוי תהיה ההדבקה של שתי השכבות בחזרה.

במקרה של טבעת מביוס (זאת אומרת טבעת עם חצי פיתול) היריעה המתקבלת לאחר הפרדת השכבות היא טבעת עם פיתול שלם. יריעה זאת דיפאומורפית לטבעת רגילה, ובפרט אוריינטבילית.

גריגורי פרלמן הוא מתמטיקאי יהודי, יליד סנקט פטרבורג, שפרסם בשנים 2003-2002 הוכחה להשערת פואנקרה. השערה חשובה זו, השייכת לתחום הטופולוגיה, נוסחה על ידי אנרי פואנקרה ב-1904, ונבחרה בשנת 2000 על ידי מכון קליי למתמטיקה כאחת משבע בעיות המילניום שפתרונן מזכה בפרס של מיליון דולר. פרלמן בחר לפרסם את ההוכחה שלו, שהשערת פואנקרה מהווה מקרה פרטי שלה, דווקא באינטרנט ולא בכתב עת שעובר ביקורת עמיתים. התכחשותו לממסד המדעי נמשכה כשסירב בשנת 2006 לקבל את מדליית פילדס, שמוענקת אחת לארבע שנים, ומהווה את אחד הפרסים החשובים והמכובדים ביותר בענף המתמטיקה. בשנת 2010 החליט מכון קליי להעניק לו את פרס המילניום אך פרלמן דחה גם אותו.


המתמטיקה היא האלפבית שבו כתב אלוהים את העולם.

הפילוסופיה - הרי היא כתובה בספר הגדול הפרוש מאז ומעולם לנגד עינינו - כוונתי ליקום - אך איננו יכולים להבין אם איננו לומדים את השפה ותופסים את הסמלים שבהם היא כתובה. שפה זו היא המתמטיקה.


נוסחה להפרש של שני ריבועים. נוסחה בסיסית באלגברה. כמו יתר הנוסחאות באלגברה בסיסית, פיתוח הנוסחה פשוט מאוד ומבוסס על חוק הפילוג, חוק הקיבוץ וחוק החילוף. אולם שימוש בנוסחה "לכיוון השני" מימין לשמאל מאפשר לבצע מניפולציות לא טריוויאליות משום שהוא מחליף ביטוי שעל פניו לא נראה פריק, במכפלה של שני ביטויים פשוטים יותר. על נוסחה זו מבוסס טריק שנקרא מכפלה בצמוד


מלוח שחמט הורידו את שתי הפינות הנגדיות. כיצד ניתן לכסות את הלוח לגמרי בעזרת 31 אבני דומינו, אשר כל אחת מהם מכסה שתי משבצות סמוכות?

יש גם חידת בונוס!

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: נטגר – אתגר לשוחרי המתמטיקה

עיתון מתמטי לנוער, היוצא לאור על ידי הפקולטה למתמטיקה בטכניון. בנוסף לחומרים חדשים מכיל האתר ארכיון של כתבי העת "גליונות למתמטיקה", "רבעון למתמטיקה" ו"דפים למתמטיקה ופיזיקה".

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

שבתאי אונגרו, ‏מבוא לתולדות המתמטיקה, סדרת אוניברסיטה משודרת, בהוצאת משרד הביטחון – ההוצאה לאור, 1989

כשאר הספרים בסדרת אוניברסיטה משודרת, גם ספר זה מבוסס על הרצאות שנתן מחברו בגלי צה"ל. הספר, בשני חלקים, עוסק במתמטיקה ביוון העתיקה, במתמטיקה של המאות ה-16 וה-17, ובמתמטיקה של המאות ה-19 וה-20. בפתח דבר לספר תיאר המחבר, שבתאי אונגרו, פרופסור במכון להיסטוריה ופילוסופיה של המדעים והרעיונות באוניברסיטת תל אביב, את גישתו:

"התפיסה השלטת בהרצאות היא התפיסה ההיסטורית הרואה במתמטיקה יצירה אנושית במלוא מובנה של המלה, המושפעת מאופי יוצריה ומאיכותם, מן הבעייתיות הפנימית של המקצוע ומן המסגרות החיצוניות השונות שהיצירה המתמטית מתנהלת בהן."
משפטים מפורסמים
השערות מפורסמות

המשפט היסודי של האריתמטיקה הוא המשפט הקובע כי כל מספר טבעי ניתן להצגה כמכפלה ייחודית של מספרים ראשוניים, עד כדי שינוי הסדר של הגורמים. בכלל זה מכפלה של גורם אחד (כאשר המספר הוא ראשוני בעצמו), ומכפלה של אפס גורמים (המספר 1).

למשל . אין כל דרך אחרת לכתוב את המספר הזה בתור מכפלת ראשוניים.

המשפט מראה כי למספרים הראשוניים חשיבות רבה – הם מהווים את "אבני הבניה" הבסיסיות של כל המספרים. למשפט שימושים רבים, החל במציאת המחלק המשותף המקסימלי של מספרים וכלה בהוכחת משפטי האי-שלמות של גדל.

מבט על משפטים והשערות נוספים
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט


גאומטריה אלגברית היא הענף במתמטיקה העוסק בשילוב של אלגברה מופשטת (בעיקר אלגברה קומוטטיבית) עם גאומטריה. גאומטריה אלגברית עוסקת בלימוד אוסף הפתרונות של מערכת משוואות פולינומיליות. כאשר ישנו יותר ממשתנה אחד, שיקולים גאומטריים הופכים להיות חשובים לצורך הבנת התופעות השונות המתרחשות. הגאומטריה האלגברית עוסקת לרוב בניסיון להבין את מכלול הפתרונות של משוואות פולינומיליות, ולרוב אינה עוסקת בחיפוש פתרון מסוים. ענף הגאומטריה האלגברית הוא אחד העמוקים ביותר בכל המתמטיקה, הן מבחינה רעיונית, והן מבחינת הטכניקות שמשתמשים בהן בתחום.

ערכים המחפשים עורכים

דיונים, ייעוץ ועזרה