פורטל:מתמטיקה/מאמר נבחר/23
השערת גולדבך החלשה היא משפט בתורת המספרים, שלפיו כל מספר אי־זוגי שגדול מ־5 הוא סכום של שלושה מספרים ראשוניים. ההשערה הופיעה בהתכתבות בין כריסטיאן גולדבך ללאונרד אוילר ב־1742, יחד עם השערת גולדבך הרגילה. ההתקדמות המהותית הראשונה לעבר הוכחת ההשערה נעשתה ב־1922 על ידי הארדי וליטלווד. ב־1937 הוכיח איוואן וינוגרדוב כי ההשערה מתקיימת עבור מספרים שגדולים מקבוע מסוים . לאחר מכן מתמטיקאים רבים שיפרו את החסמים על הקבוע, עד שלבסוף ב־2013 הצליח הראלד הלפגוט לסגור את הפער בין החסם התאורטי לגבולות הבדיקה החישובית, ולהוכיח בכך את ההשערה.
השערת גולדבך החלשה נקראת כך כי קל להסיק אותה מהשערת גולדבך, שאומרת שכל מספר זוגי שגדול מ־2 הוא סכום של שני ראשוניים. למעשה השערת גולדבך שקולה לטענה שכל מספר טבעי שגדול מ־5 הוא סכום של 3 ראשוניים. מהשערת גולדבך החלשה נובע שכל מספר טבעי שגדול מ־7 הוא סכום של 4 ראשוניים.