לדלג לתוכן

גאומטריה אוקלידית

מתוך ויקיפדיה, האנציקלופדיה החופשית
אוקלידס

הגאומטריה האוקלידית היא התורה המתמטית של נקודות, ישרים ומעגלים במישור, המבוססת על מספר אקסיומות והנחות שהציג וסיכם אוקלידס בספרו יסודות, והכללות שלה למרחב התלת-ממדי. מדידות לצרכים הנדסיים נעשו בכל רחבי העולם העתיק, ואף נעשו מספר הבחנות כגון זו שבמשפט פיתגורס, אבל רק בתרבות היוונית נבנתה עבורם מסגרת תאורטית שיטתית, שבליבה התהליך הדדוקטיבי שבו מקבלים משפט מהנחות יסוד ומשפטים קודמים.

במשך יותר מאלפיים שנה נקראה הגאומטריה האוקלידית פשוט "גאומטריה", משום שהייתה הגאומטריה היחידה. ניסיונות להוכיח את אקסיומת המקבילים מתוך שאר האקסיומות הביאו במאה ה-19 לפיתוחן של גאומטריות אלטרנטיביות, שאינן מתבססות על האקסיומה הזו, והן קרויות גאומטריות לא אוקלידיות.

גאומטריה אוקלידית נמנית עם ענפי המתמטיקה המעטים הנלמדים בבית הספר היסודי והתיכון. במסגרת זו יש המבחינים, משיקולים דידקטיים, בין גאומטריית המישור (או הנדסת המישור), העוסקת בגופים מישוריים בלבד, כגון משולש ומעגל, ובין גאומטריית המרחב (או הנדסת המרחב), העוסקת בגופים תלת-ממדיים, כגון פירמידה, קובייה וכדור.

אוקלידס, שנחשב לאבי הגאומטריה בזכות ספרו "יסודות", ביסס את הגאומטריה המישורית על שני מונחי יסוד, ה"נקודה", וה"ישר", שאינם מוגדרים באופן מתמטי מדויק, אבל הם מקבלים את משמעותם ואת התכונות שלהם מהנחות היסוד שהם מקיימים והקשר שלהם למונחים אחרים שאוקלידס מגדיר, ביניהם ה"מעגל", ה"זווית" וה"מישור". הנקודה הישר המעגל והזווית מקיימים יחד איתם חמש הנחות:

  1. אפשר להעביר קטע ישר בין שתי נקודות.
  2. אפשר להמשיך קטע ישר ללא גבול.
  3. אפשר לתאר מעגל על-פי מרכז ורדיוס.
  4. כל הזוויות הישרות שוות ביניהן.
  5. אם שני ישרים נחתכים על ידי ישר שלישי באופן שסכום הזויות הפנימיות שייווצרו באחד הצדדים קטן מסכום שתי זוויות ישרות, אזי אם יוארכו הישרים מספיק באותו צד הם ייפגשו.

בנוסף אוקלידס מציין חמש מוסכמות, או אקסיומות, שאינן תלויות במושגים מסוימים:

  1. אלו השווים לדבר זהה שווים האחד לשני.
  2. אם שווים נוספים לשווים, הסכומים שווים.
  3. אם שווים מופחתים משווים, ההפרשים שווים.
  4. אלו החופפים אחד לשני שווים.
  5. השלם גדול מהחלק.

ההנחה החמישית שקולה לטענה כי דרך נקודה שמחוץ לישר עובר מקביל אחד ויחיד, המכונה "אקסיומת המקבילים". בניגוד לשאר ההנחות והאקסיומות, הנראות פשוטות ומובנות מאליהן, אקסיומת המקבילים נראתה למתמטיקאים לאורך ההיסטוריה פחות טבעית, והם ניסו למצוא דרך להוכיח אותה משאר ההנחות. רק במאה ה-19 הוכח שהיא בלתי ניתנת להוכחה, על ידי יצירת הגאומטריה ההיפרבולית שבה כל ארבע האקסיומות הראשונות נכונות אך החמישית איננה נכונה. תחום זה של הגאומטריה נקרא גאומטריה לא-אוקלידית, בניגוד ל"גאומטריה אוקלידית" שבה מניחים את כל חמש ההנחות.

המוסכמות וההנחות שהציע אוקלידס אינן מספיקות לביסוס של הגאומטריה במידת הקפדנות המקובלת היום; במקומן מקובל להשתמש במערכת האקסיומות של הילברט שהציע דויד הילברט בסוף המאה ה-19.

פיתוח גאומטריית המרחב דורש את מושג המישור, המאופיין בכך שדרך 3 נקודות שאינן נמצאות על ישר אחד עובר מישור אחד ויחיד.

לקריאה נוספת

[עריכת קוד מקור | עריכה]
  • דיבשה אמירה, ביסוס אכסיומתי ליסודות הגאומטריה, הוצאת עם עובד ודביר, 1962
  • Euclid's Elements, "היסודות", ספרו של אוקלידס, בתרגום לאנגלית

קישורים חיצוניים

[עריכת קוד מקור | עריכה]