לדלג לתוכן

קרל גוסטב יעקב יעקובי

מתוך ויקיפדיה, האנציקלופדיה החופשית
קרל גוסטב יעקב יעקובי
Carl Gustav Jacob Jacobi
לידה 10 בדצמבר 1804
פוטסדאם, ממלכת פרוסיה, האימפריה הרומית הקדושה עריכת הנתון בוויקינתונים
פטירה 18 בפברואר 1851 (בגיל 46)
ברלין, ממלכת פרוסיה, הקונפדרציה הגרמנית עריכת הנתון בוויקינתונים
ענף מדעי מתמטיקה
מקום מגורים גרמניה
מקום קבורה Dreifaltigkeitskirchhof I עריכת הנתון בוויקינתונים
מקום לימודים
מנחה לדוקטורט ארנו דירקסן עריכת הנתון בוויקינתונים
מוסדות
תלמידי דוקטורט אוטו הסה, פרידריך יוליוס ריכלוט, פאול גורדן, וילהלם שייבנר, אוסוולד הרמס, קרל וילהלם ברוכארדט, יוהאן גאורג רוזנהיים עריכת הנתון בוויקינתונים
פרסים והוקרה
  • אות מסדר ההצטיינות במדעים ואמנויות של גרמניה
  • חבר זר של החברה המלכותית (6 ביוני 1833)
  • הפרס הגדול במדעים מתמטיים (1830)
  • פור לה מריט עריכת הנתון בוויקינתונים
צאצאים לאונרד יעקובי עריכת הנתון בוויקינתונים
הערות יהודי מומר, אח של מוריץ הרמן יעקובי
תרומות עיקריות
תרומה לחשבון דיפרנציאלי, יעקוביאן.
לעריכה בוויקינתונים שמשמש מקור לחלק מהמידע בתבנית

קרל גוסטב יעקב יעקוביגרמנית: Carl Gustav Jacob Jacobi; ‏ 10 בדצמבר 180418 בפברואר 1851), מתמטיקאי יהודי-גרמני מומר. נחשב לאחד מגדולי המתמטיקאים של תקופתו.

תולדות חייו

[עריכת קוד מקור | עריכה]

יעקובי נולד בפוטסדאם, פרוסיה (כיום גרמניה) בשם ז'אק (Jacques-יעקב) שמעון יעקובי לבנקאי שמעון ולרחל לבית להמן (Lehmann); אחיו הבכור פרופ' מוריץ הרמן יעקובי היה פיזיקאי נודע.

בילדותו לימד את יעקובי דודו (אחי אמו) וכמו כן הוא למד בגימנסיה בפוטסדאם, הוא היה תלמיד מצטיין והתחיל להתעניין במתמטיקה. ב-1821 התחיל ללמוד מתמטיקה באוניברסיטת ברלין.

ב-1825 קיבל תואר דוקטור ובאותה השנה התנצר כדי שיוכל לקבל משרה באוניברסיטה. הוא לימד שנה באוניברסיטת ברלין אך ב-1826 עבר להורות מתמטיקה באוניברסיטת קניגסברג.

ב-1831 נשא לאישה את מארי שווינק (Marrie Schwinck), ושנה לאחר מכן מונה לפרופסור מן המניין באוניברסיטת קניגסברג. ב-1843 פרש יעקובי מאוניברסיטת קניגסברג, כיוון שסבל מבעיות רפואיות, ולאחר שהות קצרה באיטליה עבר לברלין. בברלין הרצה באוניברסיטה.

יעקובי נפטר ב-1851 מאבעבועות שחורות.

אחד ההישגים הגדולים ביותר של יעקובי היה התאוריה שלו על פונקציות אליפטיות ועל הקשר שלהן לפונקציות תטא. הוא פיתח תאוריה זאת בחיבורו המהפכני Fundamenta nova theoriae functionum ellipticarum (משנת 1829), ובמאמרים נוספים בעיתון המתמטי Crelle. פונקציות תטא הן בעלות חשיבות גדולה בפיזיקה מתמטית; משוואות התנועה של מערכות פיזיקליות רבות הן אינטגרביליות במונחי פונקציות תטא של יעקובי, כמו אלו של מטוטלת, סביבון אוילר, הסביבון הלגראנז'י הסימטרי ובבעיית קפלר (תנועה פלנטרית בשדה כבידתי מרכזי).

הוא תרם תרומות יסודיות רבות במחקר של משוואות דיפרנציאליות ובמכניקה רציונלית, באופן ראוי לציון בתורת המילטון-יעקובי.

כוחו העיקרי של יעקובי היה בפיתוחים אלגבריים, והוא בעל תרומות מסוג זה לתחומים מתמטיים רבים, כפי שניתן לראות ברשימה הארוכה של מאמרים שיעקובי פרסם החל מ-1826. אחת מאמרותיו הידועות היא "תמיד צריך להפוך" (בגרמנית: man muss immer umkehren) והיא מבטאת את האמונה שלו שהמפתח לפתרונן של בעיות קשות רבות נעוץ בהצגתן בצורה הפוכה.

במאמר מ-1835, יעקובי הוכיח את התוצאה הבסיסית הממיינת פונקציות מחזוריות (כולל אליפטיות): אם פונקציה חד ערכית במשתנה אחד היא בעלת יותר ממחזור אחד, אז פונקציה כזו לא יכולה להיות בעלת יותר משני מחזורים, והיחס בין המחזורים לא יכול להיות מספר ממשי. הוא גילה רבות מהתוצאות החשובות על פונקציות תטא, כולל את המשוואה הפונקציונלית שהן מקיימות ואת זהות המכפלה המשולשת של יעקובי, כמו גם תוצאות רבות אחרות על סדרות q וטורים היפרגאומטריים.

יעקובי היה הראשון ליישם את התאוריה של פונקציות אליפטיות בתורת המספרים, למשל באמצעות הוכחת משפט פרמה על סכום של שני ריבועים ומשפט ארבעת הריבועים של לגראנז' בדרך שונה, אשר הניבה מידע כמותי לא רק על הקיום של הצגות כאלו, אלא גם על מספר ההצגות. זו הובילה למשפט ארבעת הריבועים של יעקובי. הוא הוכיח תוצאות דומות גם בעבור המקרים של 6 ו-8 ריבועים. עבודתו האחרת בתורת המספרים המשיכה את עבודתו של קרל פרידריך גאוס: הוכחות חדשות לחוק ההדדיות הריבועית וההצגה של סימן יעקובי; תרומות לחוקי הדדיות מסדרים גבוהים יותר, חקר שברים משולבים, וההמצאה של סכומי יעקובי.

תנועת כוכבי הלכת ובעיות דינמיות מסוימות אחרות תפסו את תשומת לבו מפעם לפעם. הוא הציג את אינטגרל יעקובי למערכת הקואורדינטות הסידרלית ב-1836. הוא תרם לחקר בעיית האליפסואיד המתנודד במאמר מפורסם מ-1834 (עבודתו הוקרה בכך שקראו לפתרונות מסוימים של הבעיה בה עסק אליפסואידי יעקובי). הוא תרם גם לגאומטריה דיפרנציאלית; בין היתר פתר את בעיית ההתנהגות של גאודזות על האליפסואיד הכללי במאמר יוצא מן הכלל מ-1839; בניגוד למקרה הספרואידי (שהוא גוף סיבוב) בו משוואת קלרו נותנת תיאור מלא של העקומים הגיאודזיים, במקרה התלת-צירי לא קל למצוא גודל שנשמר כשמתקדמים לאורך הגאודזות.

חוקרים של שדות וקטוריים ואלגבראות לי נתקלים לעיתים קרובות בזהות יעקובי, האנלוג לאסוציאטיביות עבור הפעולה של סוגרי לי.

הוא היה גם אחד ממייסדי התאוריה של דטרמיננטות; הוא המציא את הדטרמיננטה הפונקציונלית (היעקוביאן), בעלת שלל שימושים בחישובים של חשבון אינפיניטסימלי. כמו כן הוא ניסח הטענה הגאומטרית האחרונה של יעקובי שהוכחה רק בשנת 2004.

  • Carl Gustav Jacob Jacobi, Leo Koenigsberger, Leipzig: Teubner, 1904

לקריאה נוספת

[עריכת קוד מקור | עריכה]

קישורים חיצוניים

[עריכת קוד מקור | עריכה]