בערך זה נעשה שימוש בסימנים מוסכמים מתחום המתמטיקה. להבהרת הסימנים ראו סימון מתמטי.
|
מספר ליוביל הוא מספר ממשי שניתן לקרב אותו דיופנטית מכל סדר שהוא. פורמלית, מספר ליוביל אם לכל טבעי קיימים ו- שלמים כך שמתקיים:
מספרי ליוביל נקראים על שם ז'וזף ליוביל שהוכיח ב-1844 את משפט ליוביל שממנו נובע כי הם מספרים טרנסצנדנטיים. מספרי ליוביל היו המספרים הטרנסצנדנטיים הראשונים שהתגלו.
הדוגמה המוכרת ביותר למספר ליוביל היא קבוע ליוביל שהוגדר על ידי ליוביל ב-1851:
הספרה 1 מופיעה בפיתוח העשרוני של המספר במקום ה- לאחר הנקודה העשרונית לכל טבעי (ראו עצרת) ובכל מקום אחר מופיעה הספרה 0.
נגדיר סדרות:
לכל טבעי מתקיים:
בזכות משפט ליוביל, קבוע ליוביל היה לדוגמה הראשונה המוכרת למספר טרנסצנדנטי.
קל לראות שכל מספר ליוביל הוא אי-רציונלי: נניח בשלילה כי מספר ליוביל רציונלי. נבחר גדול מספיק כך ש-, ואז לכל ו- מתקיים:
בסתירה להגדרה.
לפי משפט ליוביל כל מספר אלגברי אי-רציונלי אינו ניתן לקירוב דיופנטי מסדר הגדול מהדרגה שלו (מעלת הפולינום המינימלי שלו). מכיוון שמספרי ליוביל אי-רציונליים וניתנים לקירוב מכל סדר הם בהכרח טרנסצנדנטיים.
נוכל להחליף את המופעים של הספרה 1 בקבוע ליוביל בכל סדרת ספרות שנחפוץ, והמספר עדיין יישאר מספר ליוביל. מכאן שעוצמת קבוצת מספרי ליוביל היא כעוצמת קבוצת סדרות הספרות, שהיא עוצמת הרצף. כלומר יש "הרבה יותר" מספרי ליוביל מאשר מספרים אלגבריים (שהם בני-מנייה).
לעומת זאת, קבוצת ליוביל היא קבוצה ממידה אפס והיא זניחה ביחס לקבוצת המספרים הטרנסצנדנטיים (שהמשלים שלה ממידה אפס). במילים אחרות, כמעט כל המספרים הטרנסצנדנטיים אינם מספרי ליוביל. ההוכחה לכך קצרה:
לכל ו- נגדיר איחוד של קטעים פתוחים:
נסמן את קבוצת מספרי ליוביל. כל מספר ליוביל נמצא ב- ל- מסוים ולכל . כלומר, לכל מתקיים . לכן לכל טבעי :
אורך הקטעים הוא ולכן:
וכן וזאת לכל . לכן ממידה אפס.
למספרי ליוביל ממד האוסדורף אפס. מבחינה טופולוגית מספרי ליוביל צפופים בישר הממשי.