לדלג לתוכן

סיבוב אינפיניטסימלי

מתוך ויקיפדיה, האנציקלופדיה החופשית
ערך ללא מקורות
בערך זה אין מקורות ביבליוגרפיים כלל, לא ברור על מה מסתמך הכתוב וייתכן שמדובר במחקר מקורי.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה. (27 בספטמבר 2024)
ערך ללא מקורות
בערך זה אין מקורות ביבליוגרפיים כלל, לא ברור על מה מסתמך הכתוב וייתכן שמדובר במחקר מקורי.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה. (27 בספטמבר 2024)

במתמטיקה, סיבוב אינפיניטסימלי הוא צורה גבולית של סיבוב קטן; סיבוב של המרחב בזווית אינפיניטסימלית סביב ציר מסוים. בשונה מסיבובים סופיים[1], סיבובים אינפיניטסימליים מתחלפים ביניהם, במובן שהקומוטטור של שני סיבובים אינפיניטסימליים מסדר גודל הוא מסדר גודל של . תכונה זאת היא שמאפשרת להתייחס למהירות זוויתית סביב ציר מסוים כאל וקטור המכוון לאורכו, ולחבר מהירויות זוויתיות סביב צירים שונים, המייצגות סיבובים סביב צירים שונים, כאילו הן היו וקטורים.

סיבוב אינפיניטסימלי הוא מקרה פרטי של טרנספורמציה אינפיניטסימלית, שבה מטפלת התאוריה של אלגברות לי.

תיאור מתמטי

[עריכת קוד מקור | עריכה]

סיבובים אינפיניטסימלים מיוצגים, בדומה לסיבובים סופיים, כמטריצות סיבוב הפועלות על מרחב וקטורי. סיבוב אינפיניטסימלי של וקטור מיוצג על ידי הביטוי:

כאשר היא מטריצה אינפיניטסימלית ו- היא מטריצת היחידה. הקומוטטיביות של שני סיבובים אינפיניטסימליים מתגלה כאשר מרכיבים ביניהם:

מכיוון שנרצה שהמטריצה האינפיניטסימלית תייצג סיבוב אינפיניטסימלי, ולפיכך היא צריכה להיות מטריצת סיבוב, היא חייבת להיות מטריצה אורתוגונלית, ולכן אם אז נדרש ש- תקיים את הקשר :

אבל קל להראות ש- ,, ולכן נקבל:

כלומר המטריצה האינפיניטסימלית היא אנטיסימטרית. לפיכך המטריצה היא בעלת הצורה הכללית:

והשינוי הדיפרנציאלי בוקטור לאחר הפעלת המטריצה עליו הוא:

שינוי שניתן לכתוב אותו מחדש כ-:

את הביטוי באגף ימין ניתן לזהות עם המכפלה הווקטורית . אם נשליך תוצאה זו על תרחישים פיזיקליים, נקבל:

כאשר הוא וקטור המהירות הזוויתית. מכאן נובע שהסיבוב הכולל של וקטור במערכת ייחוס נייחת שווה לסכום הסיבוב שלו כפי שנצפה במערכת הייחוס המסתובבת במהירות זוויתית עם איבר הסיבוב היחסי , קשר שמתומצת במשוואה:

קשר שמהווה בסיס ליישומים רבים, כמו גזירת כוח קוריוליס במערכת ייחוס מסתובבת או שימושים מתקדמים יותר במסגרת המכניקה של גוף קשיח (מקשר זה ניתן לפתח את משוואות הדינמיקה של אוילר).

הערות שוליים

[עריכת קוד מקור | עריכה]
  1. ^ אי החילופיות של סיבובים סופיים היא תכונה מהותית המרכזית לתיאור סיבובים במסגרת אלגברת הקווטרניונים; להסבר מורחב על התיאור האלגברי של סיבובים סופיים, ראו ערך קווטרניונים וסיבובים מרחביים.