לדלג לתוכן

מכפלה וקטורית

מתוך ויקיפדיה, האנציקלופדיה החופשית

במתמטיקה ובפיזיקה, מכפלה וקטורית היא פעולה בינארית על שני וקטורים במרחב תלת־ממדי, שמחזירה וקטור (בניגוד למכפלה הסקלרית שמחזירה סקלר). הווקטור המוחזר תמיד ניצב לשני הווקטורים המוכפלים.

הגדרה פורמלית

[עריכת קוד מקור | עריכה]
תיאור גרפי של מכפלה וקטורית. ניתן לראות כי וקטור התוצאה (הסגול) ניצב לשני וקטורים המוכפלים, ולכן גם למישור המכיל אותם. בנוסף ניתן לראות כי כאשר הופכים את סדר המכפלה, מתקבל וקטור זהה בגודלו והפוך בכיוונו.

יהיו שני וקטורים , אז מכפלתם הווקטורית (שמסומנת ב-) תוגדר כ:

כאשר היא הזווית (בין 0° ל-180°) שבין במישור המכיל את שניהם, הם האורכים (להכללת המונח אורך עיינו בערך נורמה) של הווקטורים , ו- הוא וקטור יחידה, שמאונך למישור הנקבע על ידי שני הווקטורים. חשוב לשים לב כי המכפלה הווקטורית בין שני וקטורים שונים מאפס מתאפסת אם ורק אם הם מקבילים (בניגוד למכפלה סקלרית, בה המכפלה מתאפסת אם ורק אם הווקטורים ניצבים).

כיוונו של נקבע על פי כלל היד הימנית המוגדר באופן הבא: אם מכופפים את כף יד ימין בצורת חצי עיגול, כך שהיא מתווה מעגל בכיוון של הווקטור הראשון במכפלה אל עבר הווקטור השני במכפלה דרך הזווית הקטנה שביניהם, האגודל מצביע בכיוון של וקטור התוצאה.

ניתן להגדיר מכפלה וקטורית באופן שקול על ידי הגדרת הכפל על וקטורי היחידה. בשלושה ממדים, וקטורי היחידה מוכפלים כך:

ולכן, מתקבל כי באופן כללי, שני וקטורים נכפלים כך:

.

חוק היד הימנית. אם האצבעות מתוות את הקשת הקצרה מהווקטור הראשון לווקטור השני, האגודל מצביע בכיוון תוצאת המכפלה.

בעזרת מכפלה סקלרית, קל לוודא כי וקטור התוצאה ניצב לשני הווקטורים המוכפלים.

עוד דרכים לחשב את כיוון הווקטור:

  • כלל הבורג - אם מסובבים בורג בעל תבריג ימני, כך שכיוון סיבובו מתווה את הכיוון מהווקטור הראשון לווקטור השני, וקטור התוצאה נקבע על פי כיוון ההתקדמות של הבורג (קדימה או אחורה).
  • דרך נוספת היא על ידי כיפוף אצבעות יד ימין כך שהאגודל מזדקר מעלה, האצבע נשארת זקופה, והאמה מכופפת בזווית של 90 מעלות. כעת, אם מתאימים את האצבעות כך שהאגודל הוא בכיוון הווקטור הראשון ואילו האצבע בכיוון הווקטור השני, האמה תצביע בכיוון וקטור התוצאה.

תכונות המכפלה הווקטורית

[עריכת קוד מקור | עריכה]
  • מכיוון שכיוון הווקטור תלוי בסדר הופעת האיברים במכפלה, המכפלה אינה קומוטטיבית, אך היא אנטי-קומוטטיבית, כלומר מתקיים .
  • מכפלה וקטורית אינה אסוציאטיבית, כלומר . לכן, ללא סוגריים, הביטוי לא מוגדר.
  • המכפלה הווקטורית דיסטריבוטיבית מעל החיבור: .
  • המכפלה הומוגנית ביחס לכפל בסקלר: .
  • כפל של שני וקטורים שכיוונם זהה, או שכיווניהם מנוגדים, מחזיר 0.
  • "באץ מינוס צאב" ("BAC minus CAB"): .
  • המכפלה הווקטורית מקיימת את זהות יעקובי:
  • נפח מקבילון שצלעותיו הן , ו-:
  • גם אם עבור מתקיים לא ניתן להסיק כי , אלא רק כי מקביל ל . לעומת זאת, אם לכל וקטור מתקיים , אז בהכרח .

שימושים מתמטיים

[עריכת קוד מקור | עריכה]
  • מציאת אנך למישור. כאמור, מכפלה וקטורית של שני וקטורים בת"ל מחזירה וקטור המאונך לשניהם. ישר המאונך לשני ישרים במישור, מאונך למישור הנוצר על ידם ולכן מכפלה וקטורית של שני וקטורים במישור תניב וקטור שלישי המאונך לכל וקטור במישור. וקטור זה נקרא וקטור המקדמים של המישור.
  • מציאת שטח מקבילית במרחב - גודלו של וקטור המכפלה הפנימית שווה לשטח המקבילית הנוצרת על ידי הווקטורים ו- .
  • מציאת שטח משולש במרחב.
  • מציאת היטל וקטור אחד על אחר.
  • מציאת נפח מקבילון במרחב.
  • מציאת מרחק נקודה מישר במרחב.

שימושים פיזיקליים

[עריכת קוד מקור | עריכה]

תיאור על פי וקטורי יחידה

[עריכת קוד מקור | עריכה]

כאמור, לעיתים קרובות נוח יותר לחשב את המכפלה הווקטורית באמצעות הצגת הווקטורים המוכפלים על ידי וקטורי יחידה, כלומר:

לאחר חישוב ישיר, ניתן לקבל כי

.

קל יותר לזכור צורה זו על ידי כתיבת הדטרמיננטה הבאה:

כאשר הדטרמיננטה מפותחת על פי השורה הראשונה.

חשוב להדגיש שהשימוש בדטרמיננטה כאן הוא רק בתור סימון שמטרתו להקל על זכירת הנוסחה, ואין מדובר בדטרמיננטה אמיתית: המטריצה איננה מעל השדה שבו אנו עוסקים, והתוצאה איננה סקלר כמו בדטרמיננטה רגילה אלא וקטור.

את המכפלה הווקטורית ניתן לכתוב בצורה טנזורית בצורה:

כאשר - טנזור לוי-צ'יוויטה, הוא טנזור אנטי סימטרי לחלוטין, שערך כל איבר בו הוא 1 אם סדר האינדקסים הוא ציקלי, 1- אם הסדר הוא אנטי ציקלי, ואפס במקרה אחר (כלומר אם אינדקס חוזר פעמיים). האינדקסים רצים על מספר הממדים (1,2,3 או ). הגדרה זו ניתן להרחיב למספר ממדים כלשהו:

  • בשני ממדים מתקבל טנזור בלי אינדקסים , לכן לכאורה הוא סקלר.
  • בשלושה ממדים מתקבל טנזור עם אינדקס אחד, לכן לכאורה הוא וקטור.
  • בארבעה ממדים מתקבל טנזור עם שני אינדקסים.
  • באופן כללי ב- ממדים מתקבל טנזור עם ממדים.

דבר זה מרמז לנו שגם בשלושה ממדים התוצאה של כפל שני וקטורים אינה וקטור, כי אם פסאודו וקטור. השרירותיות של כיוון התוצאה גם היא דומה לשרירותיות בכיוון של הפסאודו-וקטור. לעומת זאת מכפלה וקטורית של וקטור ופסאודו וקטור תיתן וקטור.

קישורים חיצוניים

[עריכת קוד מקור | עריכה]
ויקישיתוף מדיה וקבצים בנושא מכפלה וקטורית בוויקישיתוף