לדלג לתוכן

איזומטריה

מתוך ויקיפדיה, האנציקלופדיה החופשית

בטופולוגיה, איזומטריה היא פונקציה משמרת מרחק ממרחב מטרי אחד למרחב מטרי אחר. מרחבים שיש ביניהם איזומטריה הם איזומטריים, ויש להם אותן תכונות מטריות. המילה איזומטריה נגזרת מיוונית עתיקה ἴσος (תעתיק: איזוס) שפירושו "שווה", ו-μέτρον (תעתיק: מטרון) שפירושו "מידה".

כל איזומטריה היא חד-חד-ערכית (מהגדרת המטריקה כאי-שלילית), ולכן איזומטריות הן האיזומורפיזמים של מרחבים מטריים.

הגדרה פורמלית

[עריכת קוד מקור | עריכה]

יהיו ו- מרחבים מטריים עם מטריקות (כלומר פונקציות מרחק) ו- בהתאמה. פונקציה נקראת איזומטריה אם לכל מתקיים . איזומטריה היא תמיד חד-חד-ערכית. אחרת, לו שתי נקודות שונות ב- היו ממופות לאותה נקודה ב-, אז מהגדרת האיזומטריה גם , כלומר הן אותה הנקודה בסתירה להנחה.

איזומטריה גלובלית היא איזומטריה שהיא גם על, ועל כן היא הפיכה, וגם ההופכית לה היא איזומטריה גלובלית.

איזומטריות שומרות על מסילות גאודזיות.

איזומטריות במישור האוקלידי

[עריכת קוד מקור | עריכה]

איזומטריות של המישור שומרות על אורכי קטעים, ולכן (לפי משפט החפיפה צלע-צלע-צלע) הן שומרות זוויות. התכונה הבסיסית של איזומטריות של המישור היא שהן חייבות לשמור על הקווים הישרים (כלומר, קו ישר תמיד יעבור לקו ישר). בהתאם לכך, יש שלושה סוגים בסיסיים של איזומטריות: שיקוף, סיבוב, והזזה. בעזרת פעולות אלה אפשר לתאר את כל האיזומטריות (הלא טריוויאליות), השייכות לאחת מבין ארבע משפחות:

  • הזזה - ישנו כיוון יחיד שכל הנקודות מוזזות בו. אין נקודות שבת. הישרים שבכיוון ההזזה נשמרים. שתי איזומטריות שיקוף אשר קוי השיקוף שלהן מקבילים יוצרות הזזה.
  • שיקוף - ישר קבוע מתפקד כציר סימטריה; כל נקודה עוברת למקבילה לה מצידו השני, כלומר, ציר השיקוף הוא האנך האמצעי לקטע בין נקודה לתמונתה. כאן ציר השיקוף מהווה את אוסף נקודות השבת; הישרים המאונכים לציר נשמרים.
  • סיבוב - מסובבים את המישור בזווית נתונה (לא טריוויאלית) סביב נקודה קבועה, שהיא נקודת השבת היחידה. אף ישר אינו נשמר תחת סיבוב. שני שיקופים שקוי השיקוף שלהם חותכים זה את זה יוצרים סיבוב.
  • החלקה (או שיקוף מוזז) - זוהי הרכבה של שיקוף ושל הזזה בכיוון ציר השיקוף. שתי העתקות כנ"ל מתחלפות בכפל, כלומר לא משנה איזו מהן מבוצעת קודם. אין נקודות שבת.

אחרי שקובעים את הראשית, אפשר לכתוב כל איזומטריה בצורה כאשר היא מטריצה אורתוגונלית ו- הוא וקטור ההזזה. כאן היא איזומטריה שמשמרת את הראשית. לכן ניתן לחשוב על איזומטריה כאיבר ב- , כאשר היא חבורת המטריצות האורתוגונליות.

במכפלה הזו, המרכיב פועל על המישור לפי פעולת המטריצות. ביתר פירוט, אם עבור , אז .

פרוש הדבר הוא שחבורת האיזומטריות של המישור היא מכפלה חצי ישרה של ושל .

קישורים חיצוניים

[עריכת קוד מקור | עריכה]