שדה מושלם
באלגברה, שדה מושלם (באנגלית: Perfect field) הוא שדה אשר כל הרחבת שדות סופית שלו היא הרחבה ספרבילית. תכונה זו באה לידי ביטוי במשפטים רבים בתורת השדות ובתורת גלואה, בהם מסתמכים על היות שדה הבסיס מושלם. רוב השדות שנבחנים בתורות אלו הם שדות מושלמים.
תכונות
[עריכת קוד מקור | עריכה]על פי ההגדרה, בכל שדה מושלם כל איבר הוא ספרבילי - הפולינום המינימלי שלו מתפרק לגורמים שונים (מעל סגור אלגברי של השדה), שמספרם הוא כדרגת הפולינום. הסגור הספרבילי של שדה מושלם הוא גם סגור אלגברית.
כל שדה ממאפיין 0 הוא מושלם. שדה ממאפיין ראשוני הוא מושלם אם ורק אם כל איבר בו שווה לחזקה של איבר אחר, כלומר הומומורפיזם פרובניוס שלו מהווה אוטומורפיזם של השדה. תכונה זו מהווה למעשה את ההגדרה כללית יותר למושלמות עבור אובייקט אלגברי - חוג ממאפיין נקרא חוג מושלם אם הומומורפיזם פרוביניוס שלו הוא איזומורפיזם חוגים.
כל שדה לא מושלם הוא טרנסצנדנטי מעל תת-השדה המינימלי שלו.
דוגמאות
[עריכת קוד מקור | עריכה]- כאמור לעיל, כל השדות ממאפיין אפס, דוגמת המספרים הרציונליים והממשיים (וכל הרחבה אלגברית שלהם) הם שדות מושלמים.
- כל השדות הסופיים וההרחבות הסופיות שלהם הם שדות מושלמים.
- השדה , שדה הפונקציות הרציונליות מעל השדה , הוא שדה לא מושלם.
לקריאה נוספת
[עריכת קוד מקור | עריכה]- Cohn, P.M. (2003), Basic Algebra: Groups, Rings and Fields