קובץ:Rolling Racers - Moment of inertia (HD).ogv
לקובץ המקורי (קובץ וידאו Theora של Ogg, באורך 4.2 שניות, 1,920 × 1,080 פיקסלים, 4.29 מגה־ביטים בשנייה, גודל הקובץ: 2.15 מ"ב)
זהו קובץ שמקורו במיזם ויקישיתוף. תיאורו בדף תיאור הקובץ המקורי (בעברית) מוצג למטה. |
תיאורRolling Racers - Moment of inertia (HD).ogv |
The objects are, from back to front:
At any moment in time, the forces acting on each object will be its weight, the normal force exerted by the plane on the object and the static friction force. As the weight force and the normal force act on a line through each object's center of mass, they result in no net torque. However, the force due to friction acts perpendicular to the contact point, and therefore it does result in a torque, which causes the object to rotate. Since there is no slipping, the object's center of mass will travel with speed , where r is its radius, or the distance from a contact point to the axis of rotation, and ω its angular speed. Since static friction does no work, and dissipative forces are being ignored, we have conservation of energy. Therefore: Solving for , we obtain: Since the torque is constant we conclude, by Newton's 2nd Law for rotation , that the angular acceleration α is also constant. Therefore: Where, v0 = 0 and d is the total distance traveled. Therefore, we have: For a ramp with inclination θ, we have sin θ = h / d. Additionally, for a dimensionless constant k characteristic of the geometry of the object. Finally, we can write the angular acceleration α using the relation : This final result reveals that, for objects of the same radius, the mass the object are irrelevant and what determines the rate of acceleration is the geometric distribution of their mass, which is represented by the value of k. Additionally, we observe that objects with larger values of k will accelerate more slowly. This is illustrated in the animation. The values of k for each object are, from back to front: 2/3, 2/5, 1, 1/2. As predicted by the formula found above, the solid ball will have a larger acceleration, reaching the finish line first. |
|||
תאריך יצירה | ||||
מקור | נוצר על־ידי מעלה היצירה | |||
יוצר | Lucas V. Barbosa | |||
אישורים והיתרים (שימוש חוזר בקובץ זה) |
|
|||
גרסאות אחרות | OGG Theora Video: smaller version |
POV-Ray source code
/*
Title: Rolling Racers, a classic physics demonstration for moment of inertia
Version: 1.0
Author: Lucas V. Barbosa
Date: December 23, 2012
Coded in: POV-Ray 3.6
License: Public Domain
Updated 2021-06-16
Info
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
Author user page: http://en.wikipedia.org/wiki/User:Kieff
The final animation at Wikimedia Commons:
OGG Theora: http://commons.wikimedia.org/wiki/File:Rolling_Racers_-_Moment_of_inertia (HD).ogv
http://commons.wikimedia.org/wiki/File:Rolling_Racers_-_Moment_of_inertia.ogv
Animated GIF: http://commons.wikimedia.org/wiki/File:Rolling_Racers_-_Moment_of_inertia.gif
POV-Ray command line options: +A0.2 +AM2 +R4 -j +w1920 +h1080 +kff252 File_Gamma=sRGB
+A0.2 = anti-aliasing
+AM2 = anti-aliasing mode
+R4 = anti-aliasing quality
-j = no jittering. Jittering sucks.
+w1920 = 1920 px of width
+h1080 = 1080 px of height (so, widescreen, Full HD)
+kff252 = render 252 frames (4.2 seconds * 60 frames per second)
File_Gamma=sRGB = use sRGB colour space
Aspect Ratio: 16:9 (widescreen)
Notes
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
I have not written a full-blown physics simulator here!
All objects are assumed to have the same mass and radius (which, in reality, is irrelevant), and to roll without slipping.
The idea is to illustrate how important the geometry of the object is in defining its rotational properties.
It shouldn't be too hard to add objects with different properties.
*/
/* ----------------------- BASIC DIRECTIVES ----------------------- */
#version 3.7;
#include "rad_def.inc"
// In the beginning, there were global settings
#local p_start = 64/image_width;
#local p_end_final = 1/image_width;
global_settings {
assumed_gamma 1.0
radiosity {
pretrace_start p_start
pretrace_end p_end_final
count 60
nearest_count 20
error_bound 0.4
recursion_limit 3
minimum_reuse 0.005
}
}
// ... Lights! ...
// An area light (creates soft shadows)
light_source {
0*x // light's position (translated below)
color rgb 1.0 // light's color
area_light
<5, 0, 0> <0, 0, 5> // lights spread out across this distance (x * z)
10, 10 // total number of lights in grid (4x*4z = 16 lights)
adaptive 1 // 0,1,2,3...
circular // make the shape of the light circular
orient // orient light
translate <10, 50, -40> // <x y z> position of light
}
// ... Camera! ...
camera {
location <-0.1, 2.5, -4.0>*1
right x*image_width/image_height
look_at <0.0, 0.0, 0.0>
direction 2.2*z
rotate -30*y
translate -1.25*x
}
/* ----------------------- MACROS ----------------------- */
// Generates a ramp using a prism and the given parameters
// Downwards is towards a positive x
// Angle = incline angle, in degrees
// Length, Width = self-explanatory, in metres
#macro Ramp(Angle, Length, Width)
#local Height = RampLength * tan(radians(Angle));
prism {
linear_sweep
linear_spline
0,
Width,
4,
<0,0>, <-Length,0>, <-Length,Height>, <0,0>
rotate -90*x
translate Width/2*z
}
#end
// Generates a red or green flag
// Color of flag is based on position of the associated object
#macro Flag(ObjectPosition)
union {
union {
cylinder {
0, y*0.3, 0.0075
}
sphere {
0.3*y, 0.0075*1.5
}
pigment { color rgb 0.9 }
finish {
specular 0.5
roughness 0.2
reflection 0.2
}
}
prism {
linear_sweep
linear_spline
0,
1/100,
4,
<0,0>, <0,1>, <1,0.75>, <0,0>
rotate 90*x
scale 0.08*y
scale 0.15*x
translate y*0.29
pigment {
color rgb
// If the center of mass of the object has positive x, then it's past the finish line
#if (ObjectPosition.x > 0)
<0,1,0>*1.22
#else
<1,0,0>*1.2
#end
}
}
}
#end
/* ----------------------- SCENE SETUP ----------------------- */
// Ramp settings
#declare RampAngle = 5; // degrees
#declare RampLength = 3; // metres
#declare RampWidth = 1.25; // metres
// Physics settings
#declare Gravity = 9.8; // m/s²
// User settings
#declare PhysicsAwesome = true; // VERY important!
#declare Contrast = 1.6; // multiplier for pattern color for objects. 1 = solid color = lame
// Number of objects to use, so they can be equally spaced automatically
#declare NumObjects = 4;
/* ----------------------- OBJECTS ----------------------- */
// Radius and mass of objects, assumed to be equal for all of them
#declare Object_Radius = 0.1; // metres
#declare Object_Mass = 0.5; // kg
// Base moment of inertia
// This bit is constant for all objects with circular symmetry along the rotation axis, so it can be reused
#declare MR2 = Object_Mass * pow(Object_Radius,2);
// Solid Sphere (spoiler: our winner!)
#declare I_SolidSphere = 2/5 * MR2;
#declare Object_SolidSphere = sphere {
0, Object_Radius
pigment {
checker
color rgb <1, 0.7, 0.3>,
color rgb <1, 0.7, 0.3>*Contrast
translate <1,0,1>*0.5
scale Object_Radius/3.3*y
}
finish {
specular 0.3
roughness 0.01
}
}
// Hollow Sphere
#declare I_HollowSphere = 2/3 * MR2;
#declare Object_HollowSphere = difference {
sphere {
0, Object_Radius
}
sphere {
0, Object_Radius * 0.95
}
pigment {
checker
// Added some transparency to the hollow sphere so it looks thin-walled. Seems to be a bit more convincing.
color rgb <1, 0.2, 0.1> filter 0.3 transmit 0.5,
color rgb <1, 0.2, 0.1>*Contrast filter 0.3 transmit 0
translate <1,0,1>*0.5
scale Object_Radius/3.3*y
}
finish {
specular 0.3
roughness 0.01
}
}
// Solid Cylinder
#declare I_SolidCylinder = 1/2 * MR2;
#declare Object_SolidCylinder = cylinder {
-Object_Radius*0.75*z, Object_Radius*0.75*z, Object_Radius
pigment {
checker
color rgb <0.3, 0.7, 1>,
color rgb <0.3, 0.7, 1>*Contrast
}
finish {
specular 0.3
roughness 0.01
}
}
// Hollow Cylinder (never bet on this one!)
#declare I_HollowCylinder = MR2;
#declare Object_HollowCylinder = difference {
cylinder {
-Object_Radius*0.75*z, Object_Radius*0.75*z, Object_Radius
}
cylinder {
-Object_Radius*2*z, Object_Radius*2*z, Object_Radius*0.95
}
pigment {
checker
color rgb <0.7, 1, 0.3>,
color rgb <0.7, 1, 0.3>*Contrast
}
finish {
specular 0.3
roughness 0.01
}
}
/* ----------------------- INTERNAL VARIABLES ----------------------- */
// No need to change these!
#declare InitialPosition = RampLength * 0.9; // how far to the left objects start
#declare InitialHeight = InitialPosition * tan(radians(RampAngle));
#declare VerticalOffset = Object_Radius / cos(radians(RampAngle)); // the vertical offset places the objects tangential to the plane
// Therefore, I can treat positions of the center of mass without worrying about contact angles
#declare ObjectSpacing = RampWidth / NumObjects; // distributes available ramp width across objects
#declare BasePosition = < -InitialPosition , InitialHeight + VerticalOffset , -RampWidth/2 + ObjectSpacing/2 >; // base position
/* ----------------------- PHYSICS ----------------------- */
// Duration of simulation
#declare Duration = 4.2; // seconds - 4.2 seconds is just a good time for when everything has left the frame
#declare time = clock * Duration; // time, in seconds, at the current frame
// ... Action!
// This macro returns the angular acceleration alpha (in radians/second²) for a given body of radius R, mass M and moment of inertia I.
// As you can see, and it is somewhat surprising, the mass and radius are irrelevant for objects of the same shape.
// In other words, two solid cylinders with different masses and radii will roll at the same rate!
// I could have simplified the code, but it would become a bit cryptic to those studying its inner workings and the physics behind it.
// See the file's description page (check header at the top of this source code) for the derivation of this formula
#macro Alpha(Radius, Mass, I)
(Gravity * sin(radians(RampAngle))) / ((1 + I/(Mass*pow(Radius,2))) * Radius)
#end
// half of t^2. Integration term for t
#declare t2 = pow(time,2) / 2;
// Angular accelerations (alphas), in radians/s²)
#declare Alpha_SolidCylinder = Alpha(Object_Radius, Object_Mass, I_SolidCylinder);
#declare Alpha_HollowCylinder = Alpha(Object_Radius, Object_Mass, I_HollowCylinder);
#declare Alpha_SolidSphere = Alpha(Object_Radius, Object_Mass, I_SolidSphere);
#declare Alpha_HollowSphere = Alpha(Object_Radius, Object_Mass, I_HollowSphere);
// Rotation amount (thetas), in radians, from integrating for constant acceleration
#declare Theta_SolidCylinder = -(Alpha_SolidCylinder * t2);
#declare Theta_HollowCylinder = -(Alpha_HollowCylinder * t2);
#declare Theta_SolidSphere = -(Alpha_SolidSphere * t2);
#declare Theta_HollowSphere = -(Alpha_HollowSphere * t2);
// Gets position for an object given its theta and radius
#macro GetPosition(Theta, Radius)
// Distance travelled considering rotation without slipping
// This is neither vertical or horizontal, but total length
#local DistanceTraveled = -Theta * Radius;
#local dist_x = + DistanceTraveled * cos(radians(RampAngle)); // total motion in the x direction
#local dist_y = - DistanceTraveled * sin(radians(RampAngle)); // total motion in the y direction
// Position so far
#declare pos = BasePosition
+ x * dist_x
+ y * dist_y
;
// If the object has sunk into the ground so far, then it's actually off the ramp
#if (pos.y <= Radius)
// Therefore, we disregard the movemevent in the y direction after this point
// and put it all in the x direction. The math is simplified because the ramp ends at the origin
#local r = pos.x / cos(radians(RampAngle));
#declare pos =
+ x * r // move it the correct amount horizontally
+ y * Radius // stick it to the ground
+ z * BasePosition.z // keep z position
;
#end
pos
#end
// Defines the new position vectors
#declare Pos_SolidSphere = GetPosition(Theta_SolidSphere, Object_Radius) + z * ( ObjectSpacing*2 );
#declare Pos_SolidCylinder = GetPosition(Theta_SolidCylinder, Object_Radius) + z * ( ObjectSpacing*0 );
#declare Pos_HollowCylinder = GetPosition(Theta_HollowCylinder, Object_Radius) + z * ( ObjectSpacing*1 );
#declare Pos_HollowSphere = GetPosition(Theta_HollowSphere, Object_Radius) + z * ( ObjectSpacing*3 );
/* ----------------------- SCENE DECLARATIONS ----------------------- */
// Ground! Ha! I wonder if it will be friends with me?
plane {
y, 0
pigment { color rgb <1,1,1>*1.5 }
finish {
specular 0.5
roughness 0.1
//reflection 0.3 // reflection seemed superfluous and added nothing to it
}
}
// Place ramp in the scene
union {
object {
Ramp(RampAngle, RampLength, RampWidth)
// Add some color. The pigment creates the stripes for each "track"
pigment {
checker
color rgb <0.8,1,1>
color rgb <0.8,1,1>*0.8
scale (RampWidth/4)*z
scale RampLength*x
}
// Ooh, shiny!
finish {
specular 0.5
roughness 0.1
reflection 0.2
}
}
// Side of the ramp, just so it stands out better
object {
Ramp(RampAngle, RampLength, 0.01)
pigment {
color rgb <0.8,0.8,1>*0.9
}
translate -(RampWidth/2 + 0.01/2)*z
}
}
// Finish line
box {
<0,0,-RampWidth/2>, <0.15,1/10000,RampWidth/2>
pigment {
checker
color rgb <1,1,1>*1.7
color rgb <1,1,0.9>*0.2
scale RampWidth/(NumObjects*4)
}
}
// The four little flags
object {
Flag(Pos_HollowSphere)
translate z*(RampWidth/2*z - ObjectSpacing*0)
}
object {
Flag(Pos_SolidSphere)
translate z*(RampWidth/2*z - ObjectSpacing*1)
}
object {
Flag(Pos_HollowCylinder)
translate z*(RampWidth/2*z - ObjectSpacing*2)
}
object {
Flag(Pos_SolidCylinder)
translate z*(RampWidth/2*z - ObjectSpacing*3)
}
// Finally, our objects
object {
Object_SolidCylinder
rotate z*degrees(Theta_SolidCylinder)
translate Pos_SolidCylinder
}
object {
Object_HollowCylinder
rotate z*degrees(Theta_HollowCylinder)
translate Pos_HollowCylinder
}
object {
Object_SolidSphere
rotate z*degrees(Theta_SolidSphere)
translate Pos_SolidSphere
}
object {
Object_HollowSphere
rotate z*degrees(Theta_HollowSphere)
translate Pos_HollowSphere
}
// ... and cut!
/* END OF FILE */
פריטים שמוצגים בקובץ הזה
מוצג
ערך כלשהו ללא פריט ויקינתונים
23 בדצמבר 2012
application/ogg
היסטוריית הקובץ
ניתן ללחוץ על תאריך/שעה כדי לראות את הקובץ כפי שנראה באותו זמן.
תאריך/שעה | תמונה ממוזערת | ממדים | משתמש | הערה | |
---|---|---|---|---|---|
נוכחית | 22:47, 16 ביוני 2021 | 4.2 שניות, 1,920 × 1,080 (2.15 מ"ב) | TomFryers | Re-render at higher quality, resolution and framerate | |
08:17, 5 בינואר 2013 | 7.4 שניות, 1,280 × 720 (1.16 מ"ב) | LucasVB | {{Information |Description=pending |Source={{own}} |Date= |Author= Kieff |Permission= |other_versions= }} Category:Moments of inertia |
שימוש בקובץ
אין בוויקיפדיה דפים המשתמשים בקובץ זה.
מטא־נתונים
קובץ זה מכיל מידע נוסף, שכנראה הגיע ממצלמה דיגיטלית או מסורק שבהם הקובץ נוצר או עבר דיגיטציה.
אם הקובץ שונה ממצבו הראשוני, כמה מהנתונים להלן עלולים שלא לשקף באופן מלא את הקובץ הנוכחי.
תוכנה בשימוש |
|
---|