לדלג לתוכן

עץ פורש

מתוך ויקיפדיה, האנציקלופדיה החופשית
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
עץ פורש (הקשתות הכחולות) של גרף הגריד
שלוש דוגמאות בגרף רשת 8 על 8

בתורת הגרפים, עץ פורשׂ של גרף קשיר G הוא תת גרף קשיר של G, המכיל את כל צומתי G, ואין לו מעגלים. תת-גרף כזה הוא עץ.

אפשר לקבל עץ פורש על ידי הסרת קשתות מן הגרף, בזו אחר זו, כל עוד הקשירות לא נפגעת. אם הגרף כולל מעגל (כלומר, סדרה של קודקודים שבה כל זוג קודקודים סמוכים, וכן הזוג , מחוברים בקשת), נוכל להסיר את אחת מקשתות המעגל בלי לפגוע בקשירות. על תהליך זה אפשר לחזור עד שבגרף אין מעגלים, והתוצאה היא עץ פורש. מכיוון שמספר הקשתות בעץ תלוי רק במספר הקודקודים שלו, לכל העצים הפורשים של אותו גרף יש אותו מספר קשתות ( כאשר מספר הקודקודים בגרף הוא ). דרכים יעילות יותר למציאת עץ פורש הם באמצעות אלגוריתם חיפוש לעומק או אלגוריתם חיפוש לרוחב. אלגוריתמים אלו ירוצו בזמן ליניארי במספר הקשתות בגרף.

ספירת העצים הפורשים

[עריכת קוד מקור | עריכה]

את מספר העצים הפורשים של גרף אפשר לקבל ממשפט קירכהוף: אם A היא מטריצת השכנויות של הגרף ו- D המטריצה האלכסונית שרכיבי האלכסון שלה הם הדרגות של הקודקודים, אז המטריצה אינה הפיכה (שכן שורותיה מסתכמות לאפס). עם זאת, מכפלת הערכים העצמיים השונים מאפס שווה למספר העצים הפורשים, כפול במספר הקודקודים (זהו מספר העצים הפורשים, כשסופרים עצים עם שורש).

במקרה המיוחד של הגרף השלם על n קודקודים (הגרף שכל שני קודקודים שלו מחוברים בקשת אחת), מספר העצים הפורשים הוא . לתוצאה זו, הקרויה נוסחת קיילי, ידועות מספר הוכחות, בהן זו של פרופר המבוססת על התאמה חד חד ערכית בין העצים הפורשים של גרף שלם לבין המילים באורך n-2 מעל אלפבית של אותיות אפשריות.

עץ פורש מינימלי

[עריכת קוד מקור | עריכה]
ערך מורחב – עץ פורש מינימלי
עץ פורש מינימלי

כאשר בגרף הנתון יש "משקל" לכל קשת (כלומר, זהו גרף ממושקל), טבעי לחפש עץ פורש שלו משקל כולל מינימלי. עץ כזה נקרא עץ פורש מינימלי. לבעיה של מציאת עץ כזה יש השלכות מעשיות רבות. לדוגמה, כאשר רוצים לסלול רשת כבישים בין ערים כך שבין כל שתי ערים יהיה מסלול ולעשות זאת במחיר מינימלי, מחפשים את העץ הפורש המינימלי של הגרף שצמתיו הם הערים וקשתותיו הכבישים הפוטנציאליים ביניהן (המשקל הוא אורך הכבישים שיהיה צורך לסלול).

קישורים חיצוניים

[עריכת קוד מקור | עריכה]
ויקישיתוף מדיה וקבצים בנושא עץ פורש בוויקישיתוף
  • עץ פורש, באתר MathWorld (באנגלית)