רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים. אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים. אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים. אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים. אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
הוכחת המשפט מבוססת על שימוש בנוסחת האינטגרל של קושי. באמצעות הנוסחה מעריכים את הנגזרת של הפונקציה בכל נקודה. בשל שלמות הפונקציה, ערך הנגזרת נתון על ידי אינטגרל סגור על מעגל סביב הנקודה בה מחשבים את הנגזרת. ערך האינטגרל הולך וקטן כאשר מגדילים את רדיוס המעגל, וערך הנגזרת קטן מערך האינטגרלים על כל אחד מהמעגלים, ומכאן מסיקים כי בהכרח ערך הנגזרת הוא 0. מכיוון שערך הנגזרת של הפונקציה הוא 0 בכל נקודה, היא חייבת להיות קבועה.
אזי פולינום ממעלה (הערך השלם של ). (משפט ליוביל מתקבל כאשר ).
מסקנה נוספת מהנ"ל, הידועה כמשפט אדמר, היא: אם פונקציה שלמה ללא אפסים ו-, עם , אזי היא מהצורה כאשר פולינום ממעלה . (המשפט מתקבל מהנ"ל עם ).
המשפט הקטן של פיקאר מחזק את משפט ליוביל. הוא קובע שכל פונקציה שלמה ולא קבועה מקבלת כל ערך במישור המרוכב מלבד אולי ערך אחד (למשל פונקציית האקספוננט מקבלת כל ערך מלבד 0).
המשפט נכון גם עבור פונקציות הולומורפיות בכמה משתנים, כלומר – פונקציה הולומורפית בכמה משתנים אשר חסומה היא קבועה.
כל פונקציה הולומורפית על משטח רימן קומפקטי היא בהכרח קבועה (שכן מהקומפקטיות נובע שהפונקציה חסומה).