יש לפשט ערך זה: הערך מנוסח באופן טכני מדי, וקשה להבנה לקהל הרחב.
יש להוסיף מבוא אינטואיטיבי שיסביר את הרעיונות והמושגים בצורה פשוטה יותר, רצוי בליווי דוגמאות ותוך שימוש באמצעים אינפוגרפיים. אם אתם סבורים כי הערך איננו ברור דיו או שיש נקודה שאינכם מבינים בו, ציינו זאת בדף השיחה שלו. יש לציין כי ערכים מדעיים רבים מצריכים רקע מוקדם.
יש לפשט ערך זה: הערך מנוסח באופן טכני מדי, וקשה להבנה לקהל הרחב.
יש להוסיף מבוא אינטואיטיבי שיסביר את הרעיונות והמושגים בצורה פשוטה יותר, רצוי בליווי דוגמאות ותוך שימוש באמצעים אינפוגרפיים. אם אתם סבורים כי הערך איננו ברור דיו או שיש נקודה שאינכם מבינים בו, ציינו זאת בדף השיחה שלו. יש לציין כי ערכים מדעיים רבים מצריכים רקע מוקדם.
יש להשלים ערך זה: בערך זה חסר תוכן מהותי.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.
ניתן לזהות את השוויון בין לטור למברט שתואר מקודם על סמך חוקי הלוגריתמים (לוגריתם של מכפלה אינסופית שווה לטור אינסופי של לוגריתמים) וגזירה איבר איבר של טור הלוגריתמים המתקבל, באמצעות כלל השרשרת.
הסבר: את משוואה זו ניתן להסביר על סמך הזהות של אגף ימין שלה עם , ולאחר מכן הפעלת הזהות הקלאסית על אגף שמאל; בדרך זאת מקבלים שוויון בין המקדמים של משני אגפי המשוואה.
כאשר הסכום באגף ימין של הפונקציה האחרונה קשור לאחת מפונקציות תטא של יעקובי באופן הבא: .
ישנם גם קשרים מעניינים של טורי למברט עם פונקציית סכום הריבועים, הבאים לידי ביטוי במגוון זהויות על הפונקציה היוצרת שלה. למשל, את הפונקציה היוצרת של ניתן להציג בצורה:
כלומר זהו טור למברט שבו כל המקדמים של האיברים במקומות הזוגיים מתאפסים, ומקדמי האיברים שבמקומות האי זוגיים זהים בערכם המוחלט (שהוא 4) אך מתחלפים לסירוגין בסימנם.