לדלג לתוכן

אלגברה ציקלית

מתוך ויקיפדיה, האנציקלופדיה החופשית

באלגברה מופשטת, אלגברה ציקלית היא אלגברה פשוטה מרכזית המכילה תת-שדה (מקסימלי) המהווה הרחבת גלואה ציקלית מעל שדה הבסיס.

לאלגברה ציקלית מספר הגדרות שקולות.

הגדרה ישירה

[עריכת קוד מקור | עריכה]

תהי הרחבת גלואה ציקלית עם חבורת גלואה מסדר , ויהי . נגדיר מרחב וקטורי עם בסיס ), עם פעולת הכפל:

בדיקה ישירה מראה שהפעולה מגדירה אלגברה פשוטה מרכזית הנקראת אלגברה ציקלית ומסומנת . (להוכחת טענות אלו ראו [Row]).

הגדרה באמצעות תת-שדה מקסימלי

[עריכת קוד מקור | עריכה]

תהי אלגברה פשוטה מרכזית מעל . נאמר ש- אלגברה ציקלית אם קיים תת-שדה (מקסימלי) המהווה הרחבת גלואה ציקלית.

הגדרה באמצעות יוצרים ויחסים

[עריכת קוד מקור | עריכה]

אלגברה ציקלית היא אלגברה בעלת הצגה על ידי יוצרים ויחסים: .

שקילות ההגדרות

[עריכת קוד מקור | עריכה]

ההגדרה הראשונה שקולה לשנייה לפי המשפט:

משפט [Row, 24.45]: אלגברה פשוטה מרכזית היא אלגברה ציקלית (במובן ההגדרה הראשונה) אם ורק אם קיים עבורה תת-שדה מקסימלי המהווה הרחבת גלואה ציקלית.

סקירת ההוכחה: בכיוון , תהי חבורת הגלואה. לפי משפט סקולם-נתר, יש כך ש-, ולכן גם . לכן , כלומר שייך למרכז שהוא , כלומר , ומתקיים .

שקילות ההגדרות השנייה והשלישית נובעת מהמשפט:

משפט [GS, 2.5.3]: אם אלגברה פשוטה מרכזית היא בעלת תת-שדה מקסימלי המהווה הרחבת גלואה ציקלית, אז A איזומורפית לאלגברה מהצורה (סיגמא היוצר של חבורת הגלואה).

סקירת הוכחת המשפט: על פי משפט סקולם-נתר, האוטומורפיזם של K הוא הצמדה באיבר כלשהו : . נגדיר , ונוכיח כי : משום ש-, כלומר ; הפעלת ההצמדה על מראה כי , ולכן . כעת, קל לבדוק כי בלתי תלויים ליניארית, ולכן מקבלים הדרוש.

  • יהי שדה, ויהי הפיך בשדה. עוד נניח כי מכיל שורש יחידה פרימיטיבי מסדר , נסמנו . נגדיר . מקרה פרטי של הגדרה זו הוא אלגברת קווטרניונים, המתקבלת כאשר .
לפי משפט [GS,4.3.9], כל הרחבה ציקלית כנ"ל אפשר לרשום בצורה . כל האלגברות הציקליות עבור הן בדיוק , עבור כל שורש יחידה -פרימיטיבי .
  • יהי שדה ממאפיין ראשוני , ויהי . עבור , נביט ב-. קל לראות שכל שורש של הפולינום מגדיר הרחבת גלואה ציקלית. לפי משפט [GS,4.3.13], כל הרחבת גלואה ציקלית כנ"ל היא מהצורה עבור אלפא עם שורש מינימלי .
מעבר לכך, בתנאים הנ"ל, כל האלגברות הציקליות עבור הן מהצורה .

לקריאה נוספת

[עריכת קוד מקור | עריכה]
  • [Row]; Graduate Algebra: Noncommutative View, Louis Halle Rowen, 448-449;462-464
  • [GS]; Central Simple Algebras and Galois Cohomology, Gille and Szamuely, 33-37]