English: In the Poincaré disc model of the hyperbolic plane, lines are represented by circular arcs orthogonal to the boundary of the closure of the disc. The thin black lines meet at a common point and do not intersect the thick blue line, illustrating that in the hyperbolic plane there are infinitely many lines parallel to a given line passing through the same point.
[License: as the sole author of this image, I hereby release it into the public domain.]
היצירה הזאת שוחררה לנחלת הכלל על־ידי היוצר שלה, Trevorgoodchild מוויקיפדיה האנגלית. זה תקף בכל העולם. יש מדינות שבהן הדבר אינו אפשרי על פי חוק, אם כך: Trevorgoodchild מעניק לכל אחד את הזכות להשתמש ביצירה הזאת לכל מטרה, ללא שום תנאי, אלא אם כן תנאים כאלה נדרשים לפי החוק.Public domainPublic domainfalsefalse
יומן העלאה מקורי
תיאור הקובץ המקורי נמצא כאן. כל שמות המשתמשים הבאים מתייחסים ל-en.wikipedia.
In the Poincaré disc model of the hyperbolic plane, lines are represented by circular arcs orthogonal to the boundary of the closure of the disc. The thin black lines meet at a common point and do not intersect the thick blue line, illustrating that in t
In the Poincaré disc model of the hyperbolic plane, lines are represented by circular arcs orthogonal to the boundary of the closure of the disc. The thin black lines meet at a common point and do not intersect the thick blue line, illustrating that in
In the Poincaré disc model of the hyperbolic plane, lines are represented by circular arcs orthogonal to the boundary of the closure of the disc. The thin black lines meet at a common point and do not intersect the thick blue line, illustrating that in
In the Poincaré disc model of the hyperbolic plane, lines are represented by circular arcs orthogonal to the boundary of the closure of the disc. The thin black lines meet at a common point and do not intersect the thick blue line, illustrating that in