משוואה דיפרנציאלית ליניארית
במתמטיקה, משוואה דיפרנציאלית ליניארית היא משוואה דיפרנציאלית רגילה בפונקציה הנעלמת , שאפשר להציג בצורה כאשר הן פונקציות של המשתנה בלבד. בניגוד למרבית טיפוסי המשוואות הדיפרנציאליות, למשוואות הליניאריות יש תאוריה מפותחת וטכניקות פתרון שיטתיות. המשוואות הדיפרנציאליות הליניאריות מופיעות בתחומי מדע רבים.
רישום בצורה אופרטורית
[עריכת קוד מקור | עריכה]הסדר של משוואה דיפרנציאלית הוא הגבוה ביותר שעבורו מופיעה במשוואה הנגזרת (אם קיים כזה).
משוואה ליניארית מסדר n אפשר לרשום בצורה מקוצרת אם מגדירים אופרטור כך: , ואז המשוואה נרשמת כך: . המשוואה נקראת "ליניארית" שכן אופרטור זה הוא ליניארי: .
אם המשוואה נקראת הומוגנית.
פתרון משוואות ליניאריות
[עריכת קוד מקור | עריכה]באופן כללי, פונקציות רבות יכולות להיות פתרון של אותה משוואה. לפונקציה מסוימת שהיא פתרון של המשוואה נקרא "פתרון פרטי" של המשוואה. עבור משוואה הומוגנית סכום של כל שני פתרונות הוא פתרון וכפל בסקלר של פתרון הוא פתרון. לכן אוסף הפתרונות של משוואה ליניארית הומוגנית הוא מרחב וקטורי ויש לו בסיס, כלומר קבוצת פונקציות כך שכל פתרון של המשוואה ההומוגנית יכול להיכתב כצירוף ליניארי שלהן: . עבור בסיס של מרחב הפתרונות, נקרא לצירוף הליניארי , כאשר הם קבועים, "פתרון כללי של המשוואה ההומוגנית".
למשוואה ליניארית התכונה שהפרש של כל שני פתרונות של המשוואה הוא פתרון של המשוואה ההומוגנית . אכן, אם אז .
מכך נובעת תכונה חשובה של משוואות ליניאריות: כל פתרון של משוואה ליניארית ניתן לכתיבה כסכום של פתרון פרטי של המשוואה הליניארית, ופתרון כללי של המשוואה ההומוגנית המתאימה לה.
תכונה זו ניתן לקבל בצורה ישירה: אם הוא פתרון כלשהו של המשוואה, ו- הוא הפתרון הפרטי שאנו משתמשים בו, אז ההפרש , כפי שראינו, הוא פתרון של המשוואה ההומוגנית, וכל פתרון של המשוואה ההומוגנית ניתן לביטוי באמצעות הפתרון הכללי של המשוואה ההומוגנית.
מכך נובע שכדי לפתור בצורה כללית משוואה ליניארית לא הומוגנית יש לעשות שני דברים:
- לפתור את המשוואה ההומוגנית המתאימה לה.
- למצוא פתרון פרטי אחד למשוואה הלא הומוגנית.
קיימת שיטה בשם "וריאציית הפרמטר", המאפשרת למצוא בצורה שיטתית פתרון פרטי למשוואה הלא הומוגנית בהינתן הפתרון הכללי של המשוואה ההומוגנית. עם זאת, השיטה עלולה לכלול עבודה טכנית רבה, ונדרשת בה אינטגרציה שבה לא בהכרח ניתן לבטא את התוצאה בצורה מפורשת. שיטה אחרת, הנקראת "שיטת המקדמים הלא ידועים", מבוססת על ניחוש מושכל של צורת הפתרון הפרטי והשימוש בה הוא פשוט ונוח, אך היא טובה רק למקרים מסוימים.
באופן כללי אין פתרון שיטתי ופשוט למשוואה ליניארית הומוגנית. עם זאת, אם ידוע פתרון אחד של המשוואה, ניתן לקבל ממנו פתרון נוסף, שאינו תלוי בו. שיטה זו ידועה בשם "שיטת ד'אלמבר להורדת סדר המשוואה". כמו כן, במקרה הפרטי המיוחד שבו המקדמים הם כולם קבועים קיים פתרון שיטתי המתבסס על מה שמכונה "המשוואה האופיינית" (או: "הפולינום האופייני") של המשוואה הליניארית.
משוואה הומוגנית במקדמים קבועים
[עריכת קוד מקור | עריכה]תהא משוואה ליניארית הומוגנית כאשר כל המקדמים הם מספרים קבועים. הפתרון הוא טריוויאלי, ואנו רוצים למצוא פתרונות נוספים. מכיוון שכל המקדמים קבועים, יהיה נוח לחפש פתרון שהוא פונקציה שהשינוי היחיד שהיא עוברת במהלך גזירתה הוא כפל בקבוע. זוהי בדיוק פונקציית האקספוננט: כאשר הוא קבוע שאנו רוצים למצוא. נשים לב כי . לכן, לאחר הצבת הפתרון המשוער, נקבל:
- .
ניתן לצמצם ב- כי פונקציה זו תמיד שונה מאפס. נקבל:
- .
זוהי משוואה בנעלם הנקראת המשוואה האופיינית של המשוואה הדיפרנציאלית שלנו. המשפט היסודי של האלגברה מבטיח עבור משוואה ממעלה שקיימים לה שורשים (לא בהכרח שונים זה מזה, אך בעלי ריבוי כולל של ).
לעיתים בוחרים להסתכל על אגף שמאל של המשוואה בתור פולינום ב-, ולהציג את הבעיה כבעיה של מציאת שורשי הפולינום, הנקרא הפולינום האופייני של המשוואה הדיפרנציאלית. שתי הבעיות זהות לגמרי.
יהא שורש של הפולינום (כלומר, פתרון של המשוואה). אז הוא פתרון של המשוואה, כפי שנובע מהניחוש שלנו.
ייתכן כי הוא שורש מריבוי גדול מאחד, ואז כל פונקציה מהצורה , כאשר הוא מספר טבעי הקטן מריבוי השורש, היא פתרון של המשוואה שאינו תלוי בשאר הפתרונות שהתקבלו בדרך זו. כך עבור משוואה מסדר ניתן לקבל פתרונות בלתי תלויים.
אם כל מקדמי המשוואה הם ממשיים וחלק מהשורשים שיתקבלו הם מרוכבים, ניתן לקבל מכל פתרון מרוכב פתרון ממשי, שאינו כולל מספרים מרוכבים, בצורה זו: מכיוון שכל מקדמי המשוואה ממשיים, מספר מרוכב הוא פתרון שלה רק אם גם הצמוד שלו הוא פתרון שלה. נניח כי הם שני פתרונות שכאלו. אז הפונקציות המתאימות להם הן .
כעת, בהסתמך על העובדה שסכום וכפל בקבוע של פתרונות גם הוא פתרון, נקבל שני פתרונות ממשיים על ידי שימוש בנוסחת אוילר:
- .
ניתן להוכיח על ידי בדיקה (למשל באמצעות הוורונסקיאן) כי אלו פתרונות בלתי תלויים.
שיטת ד'אלמבר להורדת סדר המשוואה
[עריכת קוד מקור | עריכה]חלק ניכר מן התאוריה הבסיסית של משוואות דיפרנציאליות נשען על האנלוגיה בין משוואות דיפרנציאליות ליניאריות למשוואות פולינומיות. בין היתר, כאשר ידוע שורש אחד של משוואה פולינומית ממעלה n, אז ניתן לפרק לגורמים את הפולינום באמצעותו (כלומר, לחלק את הפולינום בגורם ליניארי , המערב את השורש הידוע) ולקבל פולינום חדש ממעלה n-1. באופן דומה, כאשר ידוע פתרון אחד למשוואה דיפרנציאלית ליניארית הומוגנית כללית, ניתן להוריד בעזרתו את סדר המשוואה ב-1. יותר מכך, אם ידועים k פתרונות בלתי תלויים למשוואה, אז ניתן להוריד באמצעותם את סדר המשוואה עד ל-n-k.
כאשר נתונה משוואה ליניארית הומוגנית כללית (כלומר, המקדמים הם פונקציות של ולא בהכרח קבועים), וידוע לנו פתרון לא טריוויאלי אחד של המשוואה, נרצה למצוא פתרון נוסף, בלתי תלוי בו. הגיוני לחפש פתרון שיהיה דומה בצורתו לפתרון הקיים, וההבדל ביניהם מתבטא בכפל בפונקציה לא ידועה כלשהי. לכן נסמן כאשר היא פונקציה בלתי ידועה ו- הוא הפתרון שידוע לנו. כעת נציב את הפתרון החדש למשוואה ונחלץ את . אם נצליח, קיבלנו פתרון נוסף, .
נדגים את התהליך עבור משוואה ליניארית ממעלה שנייה: . נניח שנתון פתרון לא טריוויאלי ואנו מנחשים פתרון . נחשב את הנגזרת הראשונה והשנייה של הפתרון:
- .
נציב במשוואה המקורית ונקבל:
- .
לאחר פתיחת סוגריים והוצאת גורם משותף נקבל:
- .
נשים לב כי הביטוי בסוגריים השמאליים מתאפס, כי . הוא פתרון של המשוואה הליניארית (ולכן ) לכן בסך הכול קיבלנו:
- .
כעת ניתן להציב ולקבל אחרי חילוק ב- (מותר לנו כי על פי משפט הקיום והיחידות, אם מתאפס בנקודה כלשהי הוא חייב להיות הפתרון הטריוויאלי ) את המשוואה . זוהי משוואה ליניארית מסדר ראשון, כלומר הורדנו את סדר המשוואה.
פתרון של משוואה זו נתון על ידי
כדי למצוא את הפתרון השני של המשוואה יש לעבור מ- ל- על ידי אינטגרציה נוספת, ולבסוף לכפול ב-. נקבל את התוצאה הסופית:
- .
ישנן דרכים נוספות להגיע לנוסחה זו, איך היתרון בדרך שהוצגה כאן הוא שאין היא מצריכה זכירת נוסחאות או משפטים, אלא רק שבהינתן פתרון כלשהו ניתן למצוא פתרון נוסף הנתון על ידי הצורה , גזירתו והצבתו במשוואה.
נשים לב כי שיטה זו אינה מבטיחה שהפתרון הנוסף יהיה ניתן לכתיבה על ידי פונקציות אלמנטריות: אין זה מובטח שניתן יהיה למצוא פתרון לשני האינטגרלים שבנוסחא. עם זאת, כאשר פונקציה מוצגת על ידי אינטגרלים לרוב קל יותר לעבוד איתה מאשר במצב שבו הצגתה היחידה היא על ידי משוואה דיפרנציאלית.
המקרה הכללי
[עריכת קוד מקור | עריכה]ניתן להכליל את השיטות וההגדרות למשוואה דיפרנציאלית בפונקציות וקטוריות כלומר המשוואה מהצורה:
- כאשר , ו־A היא מטריצה של פונקציות ממשיות.
אפשר להציג את y במפורש כוקטור שרכיביו הן פונקציות ממשיות גזירות, ולקבל מערכת של משוואות דיפרנציאליות עם n פונקציות נעלמות – . בהמשך החלק נוותר על סימון החץ מעל הפונקציה y, כאשר ההקשר יהיה ברור.
שיטות כלליות
[עריכת קוד מקור | עריכה]כמו בפתרון הבעיות הרגילות, גם בממדים גבוהים אוסף כל הפתרונות של משוואה דיפרנציאלית ליניארית הוא מרחב וקטורי, וממדו הוא ממד הווקטור y. כדי לייצג את מרחב הפתרונות באופן נוח וקומפקטי משתמשים במטריצה של פונקציות , שהיא הפיכה לכל t בתחום הפתרון של המשוואה, ומקיימת את השוויון . מטריצה זו נקראת המטריצה היסודית או המטריצה הפונדמנטלית (fundamental matrix) של המשוואה. באמצעות מטריצה זו ניתן להציג כל פתרון של המשוואה ההומוגנית באמצעות הכפלת המטריצה בווקטור קבוע כלשהו. פתרונות המשוואה הלא הומוגנית מתקבלים על ידי כפל של המטריצה היסודית בווקטור של פונקציות גזירות שמקיים את המשוואה .
נפתור קודם כל את המקרה הפשוט ביותר: כאשר y פונקציה רגילה מהממשיים לעצמם. נשתמש באיטרציות של פיקאר כדי לפתור את המשוואה הזו:
כאשר את המעבר השני אפשר להוכיח באינדוקציה. קל לראות שהאיטרציות מתכנסות לפונקציה , שפותרת את המשוואה. בצורה דומה, ניתן לראות שהפתרון הכללי עבור תנאי התחלה הוא:
למעשה, אותה שיטה בדיוק יכולה לפתור גם את המשוואה הדיפרנציאלית כאשר A מטריצה ריבועית. על ידי האיטרציות של פיקאר מתקבל, כמו קודם, שהפתרון למשוואה עם תנאי ההתחלה הוא הגבול:
האיבר האחרון בשוויונות הוא האקספוננט המטריציאלי של המטריצה מוכפל בוקטור b. המטריצה היא מטריצה יסודית של המשוואה.
באופן דומה למקרה הכללי, אפשר להראות שהמטריצה היסודית שמתאימה למשוואה היא המטריצה .
רדוקציה למשוואה מסדר n
[עריכת קוד מקור | עריכה]כל משוואה ליניארית מסדר n ניתנת להצגה כמערכת של n משוואות ליניאריות על ידי המעבר הבא: אם
- .
- .
המשוואה האחרונה מתקבלת מהמשוואה המקורית על ידי ההחלפה .
באופן הזה מתקבלת מערכת משוואות ליניאריות שפתרונה שקול לפתרון המשוואה המקורית.