יחס טרנזיטיבי
במתמטיקה ולוגיקה, חוק ההעברה הוא יחס המקיים את "כלל המעבר": אם a מתייחס ל-b ו-b מתייחס ל-c, אז גם a מתייחס ל-c. תכונה חשובה זו מתקיימת בכל יחס שקילות ובכל יחס סדר. מאידך, כל חוק העברה אפשר לתאר באמצעות יחס שקילות ויחס סדר על קבוצת המנה. ליחס המקיים חוק העברה קוראים יחס עוֹבְרָנִי[1] (בלועזית: יחס טרנַזיטיבי).
היחסים "עוקב", "צמוד ל", "ליד", "הבא בתור" או "בן-של" אינם טרנזיטיביים. היחס "בן-של" למשל אינו טרנזיטיבי, משום שמכך שאיתמר הוא בנו של אהרון ושאהרון בנו של עמרם, לא נובע שאיתמר הוא בנו של עמרם. לעומת זאת, היחס "x צאצא של y" הוא טרנזיטיבי (זהו "הסגור הטרנזיטיבי" של היחס הקודם - ראו להלן). היחס "צאצא" טרנזיטיבי ואינו סימטרי.
מבנה
[עריכת קוד מקור | עריכה]יחס טרנזיטיבי ואי-רפלקסיבי הוא יחס סדר חזק.
לכל יחס טרנזיטיבי ורפלקסיבי R על קבוצה X יש יחס שקילות ויחס סדר חלש על מרחב המנה , כך ש- אם ורק אם . יחס השקילות שווה לחיתוך .
תיאור דומה אפשר לתת לכל יחס טרנזיטיבי, בלי להניח רפלקסיביות: לכל יחס טרנזיטיבי R על קבוצה X יש יחס שקילות , יחס סדר חלש על מרחב המנה , ותת-קבוצה שכל אבריה סינגלטונים של , כך ש- אם ורק אם וכן ( או ). (היחס רפלקסיבי אם ורק אם ריקה).
הסגור הטרנזיטיבי
[עריכת קוד מקור | עריכה]חיתוך של יחסים טרנזיטיביים הוא טרנזיטיבי. כל יחס R ניתן להשלים ליחס טרנזיטיבי, שהוא היחס הטרנזיטיבי המינימלי המכיל את R. ההשלמה הזו נקראת הסגור הטרנזיטיבי של היחס המקורי ומסומנת . את הסגור הטרנזיטיבי של היחס R ניתן לקבל כחיתוך כל היחסים הטרנזיטיביים שמכילים את R (כיוון שהיחס המלא הוא טרנזיטיבי - חיתוך זה אינו ריק) או לחלופין על ידי ההגדרה הבאה:
- לכל שני איברים x, y מתקיים: אם ורק אם קיימת שרשרת סופית של איברים .
או באופן שקול:
כלומר איחוד כל ההרכבות החוזרות של היחס על עצמו.
לדוגמה, יחס העקיבה המוגדר על המספרים הטבעיים: x עוקב ל-y אם x=y+1, אינו טרנזיטיבי (1 הוא עוקב של 0, ו-2 עוקב של 1 אך 2 אינו עוקב של 0); הסגור הטרנזיטיבי שלו הוא היחס < ("גדול מ-").
ראו גם
[עריכת קוד מקור | עריכה]קישורים חיצוניים
[עריכת קוד מקור | עריכה]- יחס טרנזיטיבי, באתר MathWorld (באנגלית)
- יחס טרנזיטיבי, באתר אנציקלופדיה בריטניקה (באנגלית)
הערות שוליים
[עריכת קוד מקור | עריכה]
נושאים בתורת הקבוצות | ||
---|---|---|
מושגי יסוד | תורת הקבוצות הנאיבית • תורת הקבוצות האקסיומטית • קבוצה • יחידון • הקבוצה הריקה • קבוצת החזקה | |
פעולות | איחוד • חיתוך • משלים • הפרש סימטרי • מכפלה קרטזית | |
יחסים | יחס • יחס רפלקסיבי • יחס סימטרי • יחס אנטי-סימטרי • יחס טרנזיטיבי • יחס שקילות • יחס הופכי | |
פונקציות | פונקציה • פונקציה חד-חד-ערכית • פונקציה על • פונקציה חד-חד-ערכית ועל • פונקציית הזיווג של קנטור | |
משפטים | האלכסון של קנטור • משפט קנטור-שרדר-ברנשטיין • הלמה של צורן • משפט הסדר הטוב | |
סדר | סדר חלקי • סדר מלא • סדר טוב • טיפוס סדר • מספר סודר | |
עוצמות | עוצמה • קבוצה בת מנייה • קבוצה שאינה בת מנייה • עוצמת הרצף | |
אקסיומות | אקסיומת ההיקפיות • אקסיומת האיחוד • אקסיומת הקבוצה האינסופית • אקסיומת ההחלפה • אקסיומת קבוצת החזקה • אקסיומת היסוד • אקסיומת הבחירה | |
שונות | הפרדוקס של ראסל • השערת הרצף |